วันพฤหัสบดีที่ 6 กรกฎาคม พ.ศ. 2560

ระบบรางรถไฟ


ส่วนประกอบของรางรถไฟ


     ทางรถไฟ กับความสับสนของคนบนผืนแผ่นดินไทย วันนี้ขออนุญาต นำบทคัดย่อ เรื่อง ทาง จากหนังสือ ช่างรถไฟ โดย นายช่างนคร จันทศร อดีต รองผู้ว่าการรถไฟฯ มา ลงกันให้อ่าน เพื่อเข้าใจเรื่องทางรถไฟและความกว้างของราง ประเทศไทยใช้รางกว้างขนาด 1.00 เมตร เชื่อมต่อกับประเทศเพื่อบ้านในอาเซียน คือมาเลเซียซึ่งมีขบวนรถวิ่งถึงกันอยู่ และประเทศลาว ซึ่ง ก็ใช้เส้นทางขนาดความกว้าง 1.00 เมตร เชื่อมอยู่ไปจนถึงสถานีท่านาแล้ง นอกจากนั้น เขมรก็มีเส้นทางเชื่อมกับประเทศไทย ด้วยทางกว้าง 1.00 เมตร
     การพัฒนาระบบรางในประเทศไทย ต้องเกิดจากพื้นฐานความเข้าใจ เหตุผล และสิ่งแวดล้อม มากกว่า ความรู้สึก...
KM Team ขอเผยแพร่ บทความเพื่อสร้างความเข้าใจให้กับทุกท่าน ...... เรียนโดยไม่คิด มันแตกต่าง จาก คิดโดยไม่เรียน
หลายคนคงเคยสงสัยว่า ทำไม ‘ทางรถไฟ’ จึงต้องมีโครงสร้างพิเศษ ที่แปลกตานอกจากจะต้องยกสูงให้ได้ระดับแล้วยังต้องไม้หมอนรองรางเหล็กอีกชั้นหนึ่ง
หากศึกษาการทำงานของรถไฟจะพบว่าทางรถไฟนั้นมีหน้าที่หลักสำคัญอยู่ 2 ประการ คือรับน้ำหนักขบวนรถไฟ และประคองรถไฟให้วิ่งไปตามทาง
     หน้าที่ในการรับน้ำหนักขบวนรถไฟนี่เองที่ต้องทำให้ความสามารถของการรับน้ำหนักของทางรถไฟเป็นไปตามมาตรฐานที่กำหนดเรียกว่า น้ำหนักกดเพลา (Axle load) และการกระจายของน้ำหนักบนทาง (Load concentration) โดยมีตัวเลขเป็นข้อกำหนดในการออกแบบทางรถไฟและขบวนรถไฟ ดังนั้น การนำรถไฟมาวิ่งบนทางต้องคำนึงถึงน้ำหนักของรถไฟที่วิ่งด้วย
ทางรถไฟที่ออกแบบสำหรับรถสินค้าที่มีน้ำหนักกดเพลาสูงเมื่อนำรถโดยสารซึ่งเบากว่ามาวิ่งก็จะรู้สึกถึงความมั่นคงที่ดี แต่ในทางกลับกันถ้าเป็นทางที่ทำไว้ดีสำหรับรถโดยสารแล้วนำรถสินค้าไปวิ่งทางอาจจะชำรุดทรุดโทรมเร็ว ไม่ค่อยสมประโยชน์
     ในสมัยโบราณหัวรถจักรไอน้ำเป็นส่วนที่มีน้ำหนักมากที่สุด แต่ในปัจจุบันรถสินค้าคือส่วนที่หนักไม่แพ้กัน รถสินค้าที่ใช้วิ่งกันอยู่ในยุโรปมีน้ำหนักกดเพลาอยู่ที่ 25 ตัน ในขณะที่รถสินค้าในประเทศออสเตรเลียน้ำหนักกดเพลาอยู่ที่ 26 ตัน การสร้างทางรถไฟสำหรับรถความเร็วสูงโดยทั่วไปกำหนดน้ำหนักกดเพลาไว้ที่ 17-19 ตัน
      ปัจจุบันโครงสร้างทางรถไฟจึงถูกแบ่งออกเป็นอีก 2 ระดับชั้น ถ้าเป็นขบวนรถไฟขนาดเล็กมีน้ำหนักรถเบา เช่นทางรถไฟที่วิ่งในเมือง หรือรถราง จะเรียกกันว่า ‘Light Rail’ ส่วนทางรถไฟขนาดใหญ่ซึ่งสร้างเพื่อรองรับน้ำหนักขบวนรถไฟที่มีน้ำหนักมาก ประกอบไปด้วยโครงสร้างที่แข็งแรงเรียกว่า ‘Heavy Rail’ อย่างไรก็ดี การแบ่งระดับชั้นนี้ เป็นความหมายที่ใช้บอกขีดความสามารถในการขนส่งของระบบขนส่งมวลชน เช่น ‘Heavy Rail’ จะหมายถึงระบบขนส่งมวลชนที่มีขีดความสามารถในการขนคน ได้มากกว่า 50,000-60,000 คนต่อชั่วโมงต่อทิศทาง เป็นต้น
     ถ้าย้อนกลับไปในอดีตจะพบว่าทางรถไฟของประเทศไทยในช่วงหลังสงครามโลกครั้งที่ 2 สามารถรองรับน้ำหนักกดเพลาสูงสุดได้เพียงแค่ 10.5 ตัน ในขณะที่รถสินค้า มีน้ำหนักกดเพลาอยู่ที่ 8-10 ตัน ด้วยเหตุนี้จึงได้มีการปรับปรุงทางรถไฟเดิมให้สามารถรับน้ำหนักกดเพลาได้สูงสุด 16 ตันทั่วประเทศ
แต่อย่างไรก็ตามถ้ามีการปรับปรุงขนานใหญ่ (Rehabilitation) ก็จะกำหนดออกแบบ ให้สามารถรับน้ำหนักกดเพลาได้สูงสุดถึง 20 ตัน รถไฟโดยสารก็สามารถทำความเร็วได้สูงถึง 130 กิโลเมตรต่อชั่วโมง
ทางรถไฟที่สร้างขึ้นควรตอบสนองความต้องการหรือใช้ประโยชน์อย่างคุ้มค่า ทางรถไฟที่ออกแบบมาใช้เป็นการเฉพาะกิจ (Dedicated Track) เช่น ทางรถไฟขนส่งมวลชน ทางรถไฟความเร็วสูง ซึ่งสร้างมาเพื่อรองรับรถประเภทเดียวโดยเฉพาะ ทางรถไฟเหล่านี้จะไม่นำรถสินค้าที่มีน้ำหนักมากมาวิ่ง ดังนั้นแม้การใช้เส้นทางร่วมกันได้จะประหยัด มีความคุ้มค่าทางเศรษฐกิจ แต่ถ้ามองในด้านงานด้านวิศวกรรมและการดูแลรักษาแล้ว การแยกทางวิ่งออกไปต่างหากก็จะเหมาะสมกว่า
     สำหรับหน้าที่ในการกำหนดทิศทางในการวิ่งของรางรถไฟ โดยมีล้อและรางทำงานสัมพันธ์กัน ในการกำหนดเส้นทางวิ่งไปตามราง ส่วนประกอบหลักของล้อซึ่งทำหน้าที่ประคองตัวรถให้วิ่งไปตามรางและบังคับไม่ให้ตกรางคือ ‘บังใบ’ (Flange) ซึ่งอยู่ด้านในล้อ พื้นล้อตรงส่วนที่สัมผัสหัวรางเรียกว่า ‘เทรด’ (Thread) และเส้นผ่าศูนย์กลางล้อที่วัดตรงจุดสัมผัสนี้ เรียกว่า ‘เส้นผ่านศูนย์กลาง ณ.จุดสัมผัส’ (Diametre on Thread) ระยะห่างจากจุดที่พื้นล้อด้านบนสัมผัสหัวรางถึงจุดที่บังใบล้อสัมผัสหัวรางด้านข้าง เรียกว่า ‘ระยะส่ายตัว’ (Wheel Flange Play) ซึ่งการรถไฟฯ กำหนดระยะส่ายตัวออกด้านข้างล้อไว้ข้างละ 6.75 มม.
     เมื่อดูโครงสร้างทางรถไฟแบบแยกแยะจะพบว่า ไม่ได้มีแค่เหล็ก 2 เส้น ที่วางพาดลงไปบนไม้หมอนเท่านั้น ในองค์ประกอบของทางรถไฟยังมีโครงสร้างในส่วนที่รับน้ำหนัก และการยึดเหนี่ยวของรางรวมอยู่ด้วย รางเหล็กนั้นจะวางอยู่บนหมอนรองราง (Sleepers) โดยมีเครื่องยึดเหนี่ยวราง (Rail Fastening Device) ทำหน้าที่ยึดรางเหล็กไว้กับหมอน
ใต้หมอนคือหินโรยทาง (Ballast) ทำหน้าที่ยึดหมอนไว้กับที่แล้วถ่ายเทน้ำหนักเฉลี่ยลงสู่ดินคันทาง (Sub-Structure) และส่วนที่อยู่ล่างสุดคือดินเดิม นอกจากนั้นบนเส้นทางรถไฟที่วิ่งไปต้องผ่านประแจ สะพาน ทางตัดผ่านถนน ก็จะมี รางกัน (Safety Rail หรือ Guard Rail) ทำหน้าที่ประคองเพื่อป้องกันล้อที่อาจพลาดตกจากรางไม่ให้หลุดไปไกลหรือป้องกันไม่ให้สิ่งแปลกปลอมเข้ามาแทรกอยู่ใกล้ราง
ทางรถไฟในปัจจุบันจะมีทั้งที่ใช้หินโรยทางและไม่ใช่หินโรยทาง (Ballast Track / Non Ballast Track) ซึ่งแต่ละแบบจะมีคุณลักษณะพิเศษที่แตกต่างกัน
     ทางรถไฟที่ใช้หินโรยทางรองรับไม้หมอนจะมีข้อดีคือนุ่มนวลมีเสียงดังน้อย แต่เมื่อใช้งานไปสักระยะต้องมีการบำรุงรักษาโดยการล้างหิน และอัดหินเพิ่มเติม ในขณะที่โครงสร้างทางรถไฟที่ไม่ใช่หิน (Non Ballast Track) คือการวางรางลงบนแผ่นคอนกรีตอัดแรงที่เรียกว่า ‘สแลบแทรค’ (Slab Track) หรือการวางรางลงบนหมอนคอนกรีตที่วางอยู่บนพื้นคอนกรีตที่มีช่องบังคับ ข้อดีคือ ช่วยลดค่าใช้จ่ายในการบำรุงดูแลรักษาแต่ก็มีค่าก่อสร้างสูงกว่า
     รางรถไฟในปัจจุบันทำจากเหล็กรีดร้อน มีส่วนประกอบที่สำคัญ คือ หัวราง (Rail Head) เอวราง (Web) และฐานราง (Foot) ในอดีตจะมีการยึดรางเข้ากับไม้หมอนแล้วใช้ตะปูรางตอกยึดฐานรางไว้กับไม้หมอน ในปัจจุบัน มีการพัฒนาเทคโนโลยีการยึดรางเข้ากับไม้หมอนขึ้นมากมาย
ขนาดของรางรถไฟมีผลกับความเร็วของขบวนรถและน้ำหนักกดเพลาหรือไม่
คำตอบคือ มี เนื่องจากรางรถไฟจะรับแรงกดที่ส่งผ่านจากเพลาล้อลงไปที่โครงสร้างทางรถไฟ การกำหนดขนาดของรางจึงเป็นสิ่งสำคัญ ซึ่งปัจจุบันการรถไฟฯกำหนดมาตรฐานรางสำหรับทางสร้างใหม่หรือทางที่ได้มีการปรับปรุงแล้วไว้ 100 ปอนด์ต่อหลาตามมาตรฐานอังกฤษหรือประมาณ 50 กิโลกรัมต่อเมตรในมาตรฐาน UIC
     ปัจจุบัน พบว่ามีการใช้หมอนคอนกรีตมากขึ้นเนื่องจากหมอนไม้ ต้องใช้ไม้เนื้อแข็งที่นับวันจะหายากและมีราคาแพง ในขณะที่หมอนคอนกรีตอัดแรงจะมีอายุการใช้งานนานถึง 60 ปี แต่เมื่อเกิดอุบัติเหตุรถตกราง ทางรถไฟที่ใช้หมอนคอนกรีตก็จะเสียหายและซ่อมยากกว่าหมอนไม้
ประแจ (Switch Point) คือส่วนที่สำคัญของทางรถไฟ เพราะทำให้รถไฟสามารถเลี้ยวไปตามทางที่ต้องการได้ มีส่วนที่สำคัญคือ ลิ้นประแจ
ประแจที่โยกลิ้นให้เปลี่ยนทิศทางการวิ่งด้วยคันโยก ณ จุดที่ติดตั้งประแจ เรียกว่า ‘ประแจมือ’ ส่วนประแจที่โยกลิ้นให้เปลี่ยนทิศทางจากระยะไกล เรียกว่า ‘ประแจกล’ ประแจกลตัวเดียวที่ควบคุมจากระยะไกลเรียกว่า ‘ประแจกลเดี่ยว’ ประแจกลหลายตัวที่ควบคุมจากระยะไกล เรียกว่า ‘ประแจกลหมู่’ การบังคับสัญญาณให้ทำงานตรงกับท่าลิ้นประแจ เรียกว่า ‘การบังคับสัมพันธ์’ (Inter-locking)
ขบวนรถไฟจะสามารถวิ่งผ่านประแจทางแยกได้ด้วยความเร็วตามมาตรฐานที่ออกแบบไว้ มาตรฐานที่สำคัญคือขนาดรางที่ใช้ทำประแจและมุมหักเหของลิ้นประแจ ประแจของทางรถไฟสมัยใหม่จะมีมุมหักเห 1:16 ซึ่งขบวนรถจะสามารถวิ่งผ่านประแจเข้ารางหลีกได้ด้วยความเร็ว 120 กิโลเมตรต่อชั่วโมง ส่วนประแจที่มีมุม 1:12 ขบวนรถจะวิ่งผ่านเข้าทางหลีกได้ต่ำกว่า 120 กิโลเมตรต่อชั่วโมง การรถไฟฯยังคงมีประแจที่มีมุม 1:8 และโค้งประแจรัศมี 156 เมตร ใช้งาน ขบวนรถต้องวิ่งเข้ารางหลีกด้วยความเร็วไม่เกิน 30 กิโลเมตรต่อชั่วโมง ถ้าใช้รางขนาด 50 ปอนด์ต่อหลามาผลิตประแจ ก็ต้องวิ่งเข้ารางหลีกด้วยความเร็วไม่เกิน 15 กม./ชม.
       สำหรับรถไฟความเร็วสูงอย่างในประเทศญี่ปุ่น ออกแบบมุมลิ้นประแจไว้ที่ 1:38 เพื่อให้ขบวนรถสามารถวิ่งเข้าทางแยกที่ความเร็ว 160 กิโลเมตรต่อชั่วโมงได้ ชุดประแจที่มีมุมหักเหน้อย มีลิ้นประแจยาว ใช้พื้นที่ในการติดตั้งชุดประแจยาวกว่าประแจที่มี มุมหักเห มาก
มาตรฐานการออกแบบทางรถไฟส่วนที่แคบที่สุดเรียกว่า เขตโครงสร้าง (Structure Gauge) และการออกแบบขบวนรถไฟส่วนที่กว้างที่สุดเรียกว่าเขตบรรทุก (Loading gauge) วิศวกรผู้ออกแบบทางรถไฟต้องไม่ให้ส่วนใดของทางรถไฟยื่นล้ำเข้าไปในเขตโครงสร้าง ในทำนองเดียวกันวิศวกรผู้ออกแบบขบวนรถไฟก็ต้องไม่ให้มีส่วนใดของขบวนรถไฟยื่นล้ำเข้าไปในเขตบรรทุก
ทางรถไฟต้องออกแบบให้มีทางโค้งเพื่อขบวนรถสามารถวิ่งไปสู่ปลายทาง เรียกว่า ‘โค้งแนวนอน’ (Horizontal Curve) ซึ่งมีหลายประเภท เช่น โค้งรัศมีเดียว โค้งเปลี่ยนรัศมี และโค้งหลายรัศมี เป็นต้น นอกจากนั้น ทางรถไฟยังต้องออกแบบให้วิ่งผ่านทางที่มีระดับความสูงแตกต่างกัน เช่น ขึ้น/ลงสะพาน เนินเขา ฯลฯ จึงต้องมี ‘โค้งมุมตั้ง’ (Vertical Curve) เพื่อให้ขบวนรถวิ่งผ่านไปด้วยความนุ่มนวล
ความลาดชันของทางรถไฟโดยปกติมีหน่วยเป็น ‘เพอร์มิล’ (Per mill) ใช้สัญลักษณ์ %o ซึ่งหมายถึงทางรถไฟที่ยกขึ้นในระยะราบ 1,000 เมตร เช่น ทางรถไฟที่มีความลาดชัน 10 %o หมายถึงทางรถไฟที่ยกขึ้นสูง 10 เมตร ในระยะทาง 1,000 เมตร
ความกว้างของทางรถไฟ (Railway Gauge) กำหนดด้วยระยะห่างที่วัดตรงหัวรางด้านในซ้ายขวา ในโลกมีทางรถไฟหลายขนาดซึ่งสร้างขึ้นด้วยเหตุผลและความจำเป็นต่างกัน
เพื่อความสะดวกในการเดินขบวนรถไฟข้ามประเทศ จึงมีการรวมกลุ่มและกำหนดมาตรฐานการออกแบบทางรถไฟขึ้น เช่น กลุ่มประเทศในยุโรป ร่วมกันตั้งหน่วยงานกลางคือ UIC (International Union of Railway) โดยกำหนดขนาดความกว้างของราง ไว้ที่ 1.435 เมตร ประเทศแถบเอเชียใต้ ปากีสถาน อินเดีย บังคลาเทศ รวมกลุ่มกันกำหนดใช้ทางกว้าง 1.676 เมตร เป็นมาตรฐาน
ประเทศไทยแต่เดิมเคยมีทางรถไฟกว้าง 1.435 เมตร แต่ภายหลังเปลี่ยนมาใช้ขนาด 1.000 เมตรเหมือนกับประเทศเพื่อนบ้านในภูมิภาคอาเซียน
     ทางรถไฟขนาด 1.067 เมตรที่ใช้ในประเทศญี่ปุ่นก็สามารถพัฒนาให้รถโดยสารวิ่งด้วย ความเร็ว 160 กิโลเมตรต่อชั่วโมง ขณะที่ประเทศมาเลเซียพัฒนาทางรถไฟขนาด 1.000 เมตร โดยการสร้างทางคู่และติดตั้งระบบการจ่ายไฟฟ้าเหนือราง สามารถวิ่งทำความเร็วได้ถึง 140 กิโลเมตรต่อชั่วโมง
การพัฒนารางรถไฟในประเทศไทยเริ่มต้นตั้งแต่สมัยรัชกาลที่ 5 โดยได้มีการสร้างรางรถไฟขนาด 1.435 เมตรในบริเวณตะวันออกของแม่น้ำเจ้าพระยาในรางสายเหนือ โดยไม่ใช้ขนาดเดียวกับประเทศเพื่อนบ้าน เพื่อหลบเลี่ยงจากขนาดรางรถไฟของอังกฤษ ป้องกันการรุกรานเป็นอาณานิคม และต่อมาได้มีการสร้างรางเพิ่ม ฝั่งตะวันตกของแม่น้ำเจ้าพระยา ได้สร้างขนาด 1.000 เมตร ซึ่งเป็นรางรถไฟสายใต้ปัจจุบัน
รางรถไฟ 1.000 เมตร (มีเตอร์เกจ)
รางรถไฟ 1.435 เมตร (สแตนดาร์ดเกจ)
รางรถไฟรางแคบขนาด 0.700 เมตร


ส่วนประกอบของรถไฟ




องค์ประกอบของรถไฟ

    รถไฟ เริ่มเกิดขึ้นเป็นครั้งแรกในประเทศอังกฤษ เมื่อประมาณสามร้อยปีมาแล้ว เดิมทีเดียวสร้างขึ้นเพื่อใช้บรรทุกถ่านหิน รถนั้นมีล้อ แล่นไปตามรางและใช้ม้าลาก ต่อมาในปี พ.ศ. 2357 จอร์จ สตีเฟนสัน (George Stephenson) ชาวอังกฤษ ได้ประดิษฐ์รถจักรไอน้ำ ชื่อว่า ร็อคเก็ต (Rocket)ซึ่งสามารถแล่นได้ด้วยตนเองเป็นผลสำเร็จ นำมาใช้ลากจูงรถแทนม้าในเหมืองถ่านหิน ภายหลังจากนั้นก็ได้มีผู้ประดิษฐ์รถจักรไอน้ำและรถจักรชนิดอื่นๆ ขึ้นอีกหลายแบบ รถไฟได้เปลี่ยนสภาพจากรถขนถ่านหินมาเป็นรถสำหรับขนส่งผู้โดยสารและสินค้า ดังเช่นในปัจจุบัน
   กิจการ รถไฟ ของไทยนั้น ได้เกิดขึ้นเมื่อ พ.ศ. 2429 ตรงกับรัตนโกสินทร์ศกที่ 105 ไทยได้ให้สัมปทานแก่บริษัทชาวเดนมาร์กสร้างทาง รถไฟ สายแรกจาก กรุงเทพมหานคร ถึงสมุทรปราการ เป็นระยะทาง 21 กิโลเมตร ในเดือนตุลาคม พ.ศ. 2433 พระบาทสมเด็จพระจุลจอมเกล้าเจ้าอยู่หัวได้ทรงโปรดเกล้าให้ตั้งกรมรถไฟหลวงขึ้น โดยสังกัดกระทรวงโยธาธิการ เมื่อวันที่ 26 มีนาคม พ.ศ. 2439 พระองค์เสด็จประกอบพระราชพิธีเปิดการเดินรถไฟระหว่าง กรุงเทพมหานครถึงอยุธยา เป็นระยะทาง 71 กิโลเมตร ซึ่งทางการได้ถือเอาวันนี้เป็นวันสถาปนากิจการรถไฟหลวง ปัจจุบันทางรถไฟที่สำคัญของประเทศไทยมีอยู่ด้วยกันทั้งสิ้นรวมสี่สาย คือ สายเหนือ ถึงจังหวัดเชียงใหม่ สายใต้ ถึงจังหวัดนราธิวาสและจังหวัดสงขลา สายตะวันออก ถึงสระแก้ว และสายตะวันออกเฉียงเหนือ ถึงจังหวัดหนองคายและอุบลราชธานี รวมเป็นระยะทาง 3,855 กิโลเมตร

 ประเภทของรถจักร

ในโลกมีรถจักรอยู่หลากหลายประเภท แต่รถจักรประเภทหลักๆที่มีใช้อยู่หลากหลายในโลก คือ
  • รถจักรไอน้ำ (Steam Locomotive) ใช้พลังแรงดันสูงจากไอน้ำอันเกิดจากน้ำต้มเดือดในการดันลูกสูบเพื่อหมุนล้อ ปัจจุบันแทบไม่มีแล้ว
  • การทำงานของเครื่องจักรไอน้ำ คือ จะทำการต้มน้ำให้เดือดใน "หม้อต้มน้ำ(Boiler)” น้ำที่เดือดจะเปลี่ยนสถานะจากของเหลวกลายเป็นไอน้ำที่มีแรงดันสูง แล้วนำเอาไอน้ำที่มีแรงดันสูงนั้นไปขับดันลูกสูบให้ลูกสูบเคลื่อนที่จนเกิดงาน และนำงานที่ได้ไปใช้เป็นแหล่งต้นกำลังของเครื่องจักรต่างๆเราจึงเรียกเครื่องจักรไอน้ำนี้ว่าเป็น “ เครื่องยนต์เผาไหม้ภายนอก




  • รถจักรดีเซล (Diesel Locomotive)แบ่งออกเป็น


  • รถจักรดีเซลการกล (Diesel-Mechanical Locomotive) ใช้เครื่องยนต์ดีเซลโดยตรงในการขับเคลื่อนล้อ ปัจจุบันแทบไม่มีแล้ว

  • รถจักรดีเซลไฮดรอลิก (Diesel-Hydrolic Locomotive)
  • ท้องถนน โดยจะมีเครื่องยนต์ดีเซลเป็นหัวใจหลักในการขับเคลื่อนตัวรถ โดยจะส่งพลังงานผ่านเพลาไปยังเครื่องถ่ายถอดกำลัง (Fluid coupling) และเกียร์เพื่อให้เกิดการขับเคลื่อนของรถตามลำดับ



  • รถจักรดีเซลไฟฟ้า (Diesel-Electric Locomotive) ใช้เครื่องยนต์ดีเซลกำเนิดไฟฟ้านำไปหมุนมอเตอร์ลากจูง (Traction Motor:TM)เป็นรถจักรดีเซลที่มีใช้การมากที่สุดในโลก
  • รถจักรดีเซลไฟฟ้า เป็นรถจักรที่ใช้เครื่องยนต์ดีเซลเป็นต้นกำลังไปหมุนเครื่องกำเนิดไฟฟ้าหลัก แล้วนำกระแสไฟฟ้าที่ได้มาไปหมุนมอเตอร์ขับเคลื่อนรถจักรต่อไป ประเทศไทยเป็นประเทศแรกในเอเชียตะวันออกเฉียงใต้ที่นำรถจักรดีเซลไฟฟ้ามาใช้ในปี พ.ศ. 2471 (ค.ศ. 1928)รถจักรประเภทนี้จะมีหลักการทำงานแบบง่ายๆ คือ จะนำเครื่องยนต์ดีเซลมาปั่นเครื่องกำเนิดไฟฟ้าเพื่อผลิตไฟฟ้ากระแสสลับ และแปลงเป็นไฟฟ้ากระแสตรงเพื่อนำไปขับเคลื่อนมอเตอร์ลากจูงซึ่งเป็นมอเตอร์ไฟฟ้ากระแสตรงแบบอนุกรมที่ติดตั้งอยู่ที่เพลาล้อ ซึ่งอาจจะมีมากกว่า 1 ตัวโดยจ านวนของมอเตอร์ไฟฟ้ากระแสตรงจะขึ้นอยู่กับกำลังของขบวนรถ การใช้มอเตอร์ไฟฟ้ากระแสตรงมีข้อดีในเรื่องการควบคุมความเร็วง่ายและแรงบิดเริ่มต้นสูง แต่มีปัญหาในเรื่องขนาดที่ใหญ่และต้องบำรุงรักษามาก ด้วยเทคโนโลยีปัจจุบันมอเตอร์ไฟฟ้าเหนี่ยวนำถูกนำมาใช้แทนเนื่องจากขนาดเล็กกว่าในขณะที่ให้กำลังงานที่เท่ากันและการบำรุงรักษาไม่ยุ่งยากมากนักเมื่อเทียบกับมอเตอร์ไฟฟ้ากระแสตรง แต่จำเป็นต้องมีอินเวอร์เตอร์เพื่อเปลี่ยนไฟฟ้ากระแสตรงเป็นไฟฟ้ากระแสสลับเพื่อใช้ในการควบคุมความเร็วของรถไฟอีกครั้ง ซึ่งในำไฟฟ้าประสิทธิภาพจะลดลง แต่ด้วยข้อดีในด้านอื่นๆ จึงเป็นที่นิยมใช้ในปัจจุบัน



  • รถจักรไฟฟ้า (Electric Locomotive) ใช้ไฟฟ้านำไปหมุนมอเตอร์ลากจูง (Traction Motor:TM) เป็นรถจักรที่มีกำลังสูงมากกว่าประเภทอื่นๆ นอกจากนี้ ยังมีรถโดยสารที่สามารถขับเคลื่อนได้ด้วยตัวเอง ได้แก่

  • รถดีเซลราง (Diesel Multiple Unit:DMU) เป็นรถโดยสารที่ขับเคลื่อนด้วยกำลังดีเซล ส่วนใหญ่ขับเคลื่อนด้วยดีเซลการกล หรือดีเซลไฮดรอลิก
  • ขบวนรถดีเซลรางเป็นขบวนรถโดยสารที่มีเครื่องยนต์ดีเซลขับเครื่องอยู่ใต้ตู้โดยสาร ในปีพ.ศ. 2471 ได้นำหัวรถจักรดีเซลรุ่นแรก ยี่ห้อ S.L.M. Winterthur รุ่น 21 - 22 จ านวน 2 คัน จากประเทศสวิสเซอร์แลนด์มาใช้งาน โดยใช้เป็นรถจักรลากจูงสับเปลี่ยนท าขบวนรถไฟและลากจูงขบวนรถท้องถิ่นรอบๆ กรุงเทพฯ และหลังจากสงครามโลกครั้งที่ 2 ยุติลง รถดีเซลรางรุ่นใหม่ๆ ได้รับการพัฒนาให้มีสมรรถนะสูง มีความคล่องตัวในการใช้งานและสามารถพ่วงต่อกันคราวละหลายชุดได้ โดยแต่ละชุดเครื่องยนต์จะทำงานพร้อมกับคันที่มีคนควบคุมที่ต้นขบวนนอกจากความคล่องตัวแล้ว รถดีเซลรางยังสะดวกในการจัดทำขบวนรถสั้นๆ เพียงชุดเดียว(2 คัน) พเหมาะกับสภาพการโดยสาร (รถคันกำลัง จุที่นั่ง 78 คน ยืน 35 คน และคันพ่วงมี 84 ที่นั่งยืน 35 คน) ในแง่ความปลอดภัยของผู้โดยสาร รถทุกคันจะมีประตูขึ้นลง และเปิดปิดโดยระบบอัตโนมัติที่พนักงานขับรถจะเป็นผู้ควบคุม

  • รถรางไฟฟ้า (Electric Multiple Unit:EMU) เป็นรถโดยสารที่ขับเคลื่อนด้วยมอเตอร์ซึ่งใช้ไฟฟ้า

  • รถรางไอน้ำ (Steam Railcar) เป็นรถโดยสารที่ขับเคลื่อนด้วยพลังไอน้ำ ปัจจุบันไม่มีแล้ว

ยังมีรถที่ขับเคลื่อนด้วยพลังกังหันแก๊ส (Gas Turbine) ซึ่งไม่เป็นที่นิยม เนื่องจากมีค่าบำรุงรักษาและค่าเชื้อเพลิงสูง ปัจจุบันจึงมีประมาณ 2 ประเทศเท่านั้นที่ยังใช้การอยู่คือ ฝรั่งเศสและสหรัฐอเมริกา

ประเภทของ รถไฟ

   รถไฟ มีหลายหลายประเภทมากขึ้นอยู่กับการออกแบบที่มีจุดประสงค์ในการใช้ งานที่แตกต่างกัน รถไฟ บางประเภทจะวิ่งบนรางพิเศษเฉพาะ เช่น รถชมทัศนียภาพ รถไฟ ราวเดี่ยว รถไฟ ความเร็วสูง รถไฟพลังแม่เหล็ก รถไฟใต้ดิน หรือล้อเลื่อน เป็นต้น
รถไฟโดยสารอาจจะมีหัวรถจักรคันเดียวหรือหลายคัน อาจจะมีตู้โดยสารตู้เดียวหรือหลายตู้ แต่โดยทั่วไปแล้ว รถไฟคันหนึ่งๆจะมีแต่ตู้โดยสารทั้งขบวนแล้วตู้โดยสารตู้หรือทุกตู้นั้นจะมี เครื่องยนต์สำหรับเคลื่อนที่ติดตั้งอยู่ ในบางประเทศ โดยเฉพาะอย่างยิ่งในญี่ปุ่นและยุโรปนั้น ประชาชนจะนิยมเดินทางโดยรถไฟความเร็วสูงกันมาก
รถสินค้า มักจะพ่วงกับตู้สินค้ามากกว่าตู้โดยสาร ในบางประเทศมีรถไฟสำหรับขนส่งพัสดุหรือจดหมายอีกด้วย
 images

 องค์ประกอบของการเดินขบวนรถไฟที่สำคัญ

  • ทางรถไฟ – ทางที่มีรางเหล็ก 2 เส้น วางขนานกันบนไม้หมอนที่มีหินรองรับ
  • รถจักร – ทำหน้าที่ลากจูงรถไฟคันอื่นๆ ให้เคลื่อนที่ไปได้โดย รถจักรมีหลายชนิด ได้แก่ รถจักรไอน้ำ,รถจักรดีเซล,รถจักรไฟฟ้า และ รถจักรกังหันก๊าซ
  • รถพ่วง – ได้แก่ รถสำหรับบรรทุกคนโดยสาร ซึ่งเรียกว่า รถโดยสารและรถสำหรับบรรทุกสินค้า ซึ่งเรียกว่า รถสินค้า
  • เครื่องอาณัติสัญญาณ – เป็นเครื่องมือควบคุมการจราจรเพื่อความปลอดภัย รวดเร็วและมีประสิทธิภาพในการเดินรถ เช่น เสาสัญญาณชนิดหางปลา (semaphore) ,สัญญาณธงผ้ารูปสี่เหลี่ยมผืนผ้า 

วันพุธที่ 18 มกราคม พ.ศ. 2560

ตัวควบคุมความดัน เครื่องเย็น

 1.แค๊ปทิวบ์ Capillary Tube

       เป็นอุปกรณ์ลดความดันชนิดหนึ่งมีลักษณะเป็นท่อทองแดงขดขนาดเล็ก โดยจะติดตั้งอยู่ระหว่างแผงคอยล์ร้อน และแผงคอยล์เย็น ทำหน้าที่ลดความดันของน้ำยาที่ออกจากแผงคอยล์ร้อนเพื่อให้ได้อุณหภูมิที่ต่ำ ก่อนฉีดเข้าแผงคอยล์เย็น ข้อมูลจาก แอร์ไทยดอทคอม



2.AEV
การควบคุมสารทำความเย็นชนิดลิ้นเปิด-ปิดอัตโนมัติAutomatic Expansion Valve (ใช้ตัวย่อว่า AEV หรือ AXV)
  ลิ้น เปิดปิดอัตโนมัติ Automatic Expansion Valve มีหน้าที่ควบคุมการไหลของสารทำความเย็นที่จะไหลเข้าไปยัง อีแวปปอเรเตอร์ โดยใช้ความดันด้านต่ำควบคุมการทำงานของลิ้น AEV การทำงานของ AEV คล้ายกับการทำงานของหัวฉีดสเปรย์ ขณะที่คอมเพรสเซอร์ทำงานสารทำความเย็นในสภาพของเหลวจะถูกฉีดเป็นไอคล้ายหมอก
เข้าไปในอีแวปปอเรเตอร์ การที่ของเหลวถูกฉีดเป็นไอโดยไม่มีของเหลวไหลผ่านเข้าไปภายในอีแวปปอเรเตอร์เลย เราจึงเรียกระบบทำความเย็นที่ใช้ AEV แบบนี้ว่าระบบแห้ง



ภาพที่ 17-8 หลักการทำงานของความดันที่บังคับให้ลิ้น AEV ทำงานP1 ความดันบรรยากาศ
P2 ความดันในอีแวปปอเรเตอร์
F1 แรงดันสปริงปรับได้
F2 แรงดันสปริงปรับไม่ได้
P3 ความดันของสารทำความเย็นที่จะเข้าไปในอีแวปปอเรเตอร์
หลักการทำงานของลิ้นเปิด-ปิดอัตโนมัติ
หลักการทำงานของลิ้นเปิด-ปิดอัตโนมัติส่วนใหญ่คล้ายกันแม้ว่ารูปร่างจะแตกต่างกันบ้างก็ตาม จากภาพที่ 17-8 แสดงความดันที่บังคับให้ลิ้นทำงาน จากภาพด้านบนเป็นห้องหดตัวหรือขยายตัวได้เรียกว่าเบลโลว์ (Bellow) ภายในเบลโลว์บรรจุแกสซึ่งเมื่อได้รับ อุณหภูมิสูงก็จะขยายตัว และเมื่ออุณหภูมิต่ำแกสจะหดตัวการหดตัวและขยายตัวของแกสมีผลต่อการยืด และหดตัวของเบลโลว์เช่นกัน ดังนั้น P จึงให้เป็นความดันของแกสในเบลโลว์ F1 เป็นแรงดันสปริงที่พยายามกดก้าน Push Rod ดันให้ลิ้นเปิด แต่แรง F2 เป็นแรงดันให้ลิ้นปิด ดังนั้นความดันในอีแวปปอเรเตอร์ P2 ลดลงแรง F1 และ P1 จะมีแรงกดชนะแรง P2 เบลโลว์ขยายตัวรวมกับแรงดันสปริงซึ่งมีมากกว่าก็จะบังคับให้ลิ้นเปิด สารทำความเย็นจะถูกฉีดเป็นไอเข้ามายังอีแวปปอเรเตอร์ เมื่อปริมาณไอของสารทำความเย็นในอีแวปสูงมากพอและสูงกว่าแรง F1 P1 แรงดันสปริงตัวล่าง F2 และแรง P2 ก็จะสูงกว่าแรงกดของเบลโลว์และสปริงตัวบน ผลคือทำให้ลิ้นเลื่อนขึ้นปิดทางเข้าของสารทำความเย็น
ลิ้นปิด-เปิดอัตโนมัติมีลักษณะโครงสร้างห้องความดันอยู่ 2 ประเภทคือ
1. Bellow Type Automatic Expansion Valve
2. Diaphram Type Automatic Expansion Valve
หลักการทำงานส่วนใหญ่คล้ายกันต่างกันที่ห้องสร้างความดันเท่านั้น คือแบบหนึ่งใช้เบลโลว์ (คล้ายหีบเพลงยืด-หดได้) ส่วนอีกแบบหนึ่งใช้แผ่นไดอะแฟรม
การที่ AEV ใช้สปริง 2 ชุดก็เพื่อความสมดุลย์ของแรง และเพื่อให้มีการทำงานนิ่มนวลขึ้น
 

 
ภาพที่17-9 Automatic Expansion Valve ชนิดใช้แผ่นไดอะแฟรมA ฝาครอบยาง    B เกลียวปรับ
 C สปริงปรับ    D ไดอะแฟรม
 E กรอง        F ท่อทางเข้า
 G เกลียวปรับมาจากโรงงาน
 H สปริง        J สปริง
 K เข็ม AEV    L บ่ารองรับเข็ม
 M ด้านส่งแรงดันจากห้องเบลโลว์

3.TEV

ลิ้นปิด-เปิดแบบใช้อุณหภูมิควบคุม Thermostatic Expansion Valve ใช้ตัวย่อว่า (TXV หรือ TEV)
   ตู้เย็นและระบบทำความเย็นในปัจจุบันมักนิยมใช้ลิ้นปิด-เปิดที่ใช้อุณหภูมิเป็นตัวควบคุมเป็นส่วนมาก
ลิ้นแบบใช้อุณหภูมิควบคุมมีหน้าที่รักษาสารทำความเย็นที่ทางออกของอีแวปปอเรเตอร์ให้คงที่สม่ำเสมอ ลิ้นแบบใช้อึณหภูมิควบคุมนั้นสามารถคุมได้ทุกสภาพของสภาวะภาระ (Load ดังนั้นลิ้นชนิดนี้จึงเหมาะสมกับระบบการทำงานที่เปลี่ยนแปลง load บ่อยๆ
 


ภาพที่ 17-11 แสดงการทำงานของเทอร์โมสแตติคเอกซแพนชั้นวาวล้เเบบเบลโลว์
    จากภาพเทอร์โมสแตติคเอกซแพนชั่นวาวล์ แสดงอุณหภูมิและความดันที่ทำให้ลิ้นทำงาน F1 คือแรงดันจาก Sensing Bulb เป็นแรงที่พยายามดันให้ลิ้น V1 เปิด F2 เป็นแรงดันด้านความดันต่ำที่พยายามดันให้ลิ้นปิด P1 กะเปาะส่งแรงดันมายังห้องไดอะแฟรม หรือขดเบลโลว์ดันให้ลิ้น V1 เปิด, P2 ความดันด้านต่ำ (suction line) คือแรงดันที่พยายามให้ลิ้นปิด T1 อุณหภูมิที่กะเปาะรับความร้อน T2 อุณหภูมิของสารทำความเย็นที่ออกจากอีแวปปอเรเตอร์ด้านความดันต่ำ ลิ้นจะเปิดต่อเมื่อแรง F1 มากกว่าแรง F2 และ F3 ลิ้นปิดเมื่อแรง F1 และ P1 น้อยกว่าแรง F2 และ F3
จากรูป 17-11 TEV ทำงานตามความแตกต่างของความดัน เมื่อระบบทำความเย็นทำงาน สารทำความเย็นใน Sensing Bulb ซึ่งติดอยู่ที่ทางออกของแผงอีแวปปอเรเตอร์ หรือที่ท่อทางด้านดูด (suction line) ณ ที่จุดนี้ Sensing Bulb จะเป็นตัวรับการเปลี่ยนแปลงอุณหภูมิของสารทำความเย็นที่ออกมาจากอีแวปปอเรเตอร์ ถึงแม้ว่าการเปลี่ยนแปลงอุณหภูมิจะเปลี่ยนแปลงไม่มากนักเมื่ออุณหภูมิภายใน Sensing Bulb เปลี่ยนแปลงก็จะทำให้ความดันเปลี่ยนแปลงไปด้วย ความดันที่เปลี่ยนแปลงจะกระทำบนด้านหนึ่งของแผ่นไดอะแฟรม P2 เมื่อแผ่นไดอะแฟรมถูกความดัน P2 ก็จะขยายตัวดันก้านส่ง P เลื่อนลง ทำให้ลิ้น V1 ซึ่งติดอยู่บนแกนก้านส่งเปิด แต่ลิ้น V1 จะเปิดได้หรือไม่นั้นขึ้นอยู่กับแรงดันของสปริง F3 และความดันในอีแวปปอเรเตอร์ซึ่งจะกระทำร่วมกันอยู่ในด้านตรงข้ามกับแรง P3 ถ้าแรงดันสปริง F3 และความดันในอีแวปปอเรเตอร์  P2 มีมากกว่า แรงดัน P2และ F3 ก็จะพยายามดันให้ลิ้นปิด สารทำความเย็นก็ไม่สามารถไหลเข้าไปยังแผงอีเเวปปอเรเตอร์ได้ แต่ถ้าแรงทั้ง 2 ด้านของแผ่นไดอะแฟรมเท่ากัน ลิ้นก็จะอยู่ในสภาพสมดุลย์ แต่ถ้าหากระบบทำความเย็นทำงานความดันทั้งสองด้านจะเปลี่ยนไป ลิ้นจะเปิดหรือปิดขึ้นอยู่กับแรงดันด้านใดมากหรือน้อยกว่ากัน ถ้าแรงดันจากการขยายตัวของแผ่นไดอะแฟรม มากกว่าแรงดัน F3 และ P2 ลิ้นก็จะเปิดแต่ลิ้นจะเปิดมากหรือน้อยเราสามารถตั้งได้โดยปรับความแข็งของสปริง F3 โดยปกติแล้ว TEV จะถูกปรับให้มีอุณหภูมิใดอุณหภูมิหนึ่งแม้จะอยู่ในสภาวะ Load ใดๆ ก็ตาม TEV จะรักษาอุณหภูมิของมันที่ได้ตั้งไว้
ข้อเสียของ Thermostatic Expansion Valve ก็คือไม่สามารถควบคุมอุณหภูมิ และความดันในอีแวปปอเรเตอร์ให้คงที่ได้
จงจำไว้ว่า TXV ไม่มุ่งเรื่องความดันด้านความดันต่ำ (Lowside) เพียงแต่ต้องการป้อนสารทำความเย็นเข้าไปสู่อีแวปปอเรเตอร์ให้ได้ปริมาณที่เพียงพอไม่มากหรือน้อยเกินไปเท่านั้น




ภาพที่ 17-12 ภาพภาคตัดของจริง แสดงส่วนประกอบและชื่อชิ้นส่วนของเทอร์โม¬สแตติกเอกซแพนชั่นวาวล์ แบบเบลโลว์
    A. นัทสำหรับปรับความแข็งสปริง, B. ซีล, C. ท่อแคปทิ้ว, D. เรือนเบลโลว์ ภายนอก, E. ตัวเรือน TEV ภายนอก, F. กะเปาะ Sensing Bulb สำหรับส่งอุณหภูมิ ไปยังเบลโลว์, G. ชุดเบลโลว์, H. ตะแกรงกรองละเอียด, I. ปะเก็น, J. ท่อทางสารทำความเย็นเข้า, K. แกนเข็ม TXV, L. ซีลกันรั่ว, M. เข็ม TXV, N. บ่ารองรับเข็ม
ในกรณีที่สารทำความเย็นถูกปล่อยจาก TXV เข้าสู่อีแวปปอเรเตอร์มากเกินไป เนื่องจากเกิดความดันภายในท่ออีแวปและความดันที่ด้านท่อทางออกแตกต่างกันมากผิดปกติ ดังนั้นจึงต้องหาทางควบคุมการทำงานของลิ้นเพือให้ระดับความดันภายในและนอกไม่แตกต่างกันมากโดยการควบคุมตัว TXV




4.ตัวควบคุมด้านแรงดันต่ำLow Side 
5.ตัวควบคุมด้านแรงดันสูงHigh Side




น้ำเงินLowแดงHigh
         ระบบการทำความเย็นของเครื่องปรับอากาศจะทำงานวนเวียนเป็นวัฏจักรตลอดเวลาที่คอมเพรสเซอร์ ยังคงทำงานอยู่และน้ำยาที่มีอยู่ในระบบจะไม่มีการสูญเสียไปไหนเลย นอกเสีย จากว่าเกิดการรั่วซึม (Leak) ที่ใดที่หนึ่งเท่านั้น เนื่องจากในระบบทำความเย็นเบื่องต้นนี้ มีทั้งน้ำยาที่อยู่ในสภาพความดันสูงและอุณหภูมิสูง   กับแรงดันต่ำอุณหภูมิต่ำ จึงมีการแบ่งภาคออกเป็น 2 ภาค
      1. ทางด้านสูง (High Side) ซึ่งจะเริ่มจากทางอัดของคอมเพรสเซอร์ ผ่านคอนเดนเซอร์จนถึง ทางเข้าของอุปกรณ์ลดความดัน ส่วนนี้สารทำความเย็นจะมีทั้งความดันและอุณหภูมิสูงจึงเรียก ว่าทาง High Side 
      2. ทางด้านต่ำ (Low Side) ซึ่งจะเริ่มตั้งแต่ทางออกของอุปกรณ์ลดความดัน ผ่านอิวาพอเรเตอร์ จนถึงทางเข้าของคอมเพรสเซอร์ ส่วนนีจะมีทั้งความดันและอุณหภูมิต่ำจึงเรียกว่าทาง Low Side ระบบปรับอากาศที่ใช้กันอยู่โดยทั่วๆไปจะทำงานเป็นวัฏจักร โดยมักจะมีสิ่งที่ประกอบกันขึ้น มาเป็นระบบปรับอากาศอยู่หลายสิ่งหลายอย่างด้วยกัน

6.Electronic control


เป็นอุปกรควบคุณอุณภูมิ
 คือเครื่องควบคุมที่ทำหน้าที่ในการประมวลผลสัญญาณอินพุตจากเซนเซอร์วัดอุณหภูมิ และสั่งงานเอาต์พุต เพื่อไปควบคุมอุปกรณ์ที่ในการเพิ่มหรือลดอุณภูมิอีกที โดยกระบวนการควบคุมนั้นมีด้วยกันหลากหลายรูปแบบ เช่น ON-OFF Control, PID Control, Fuzzy Logic Control โดยการทำงานคือ จะมีหัววัดอุณหภูมิ หรือ temperature sensor ทำหน้าที่วัดอุณหภูมิส่งมาที่ temperature controller หากอุณหภูมิไม่ได้ตามที่ตั้งไว้ temperature controller จะจ่ายแรงดันไปให้ฮีตเตอร์ heater เพื่อเพิ่มอุณหภูมิให้ได้ตามที่ผู้ใช้งานต้องการ








current relay


current relay

รีเลย์ (อังกฤษrelay) คือ อุปกรณ์อิเล็กทรอนิกส์ที่ทำหน้าที่เป็นสวิตซ์ตัด-ต่อวงจร โดยใช้แม่เหล็กไฟฟ้า[1] และการที่จะให้มันทำงานก็ต้องจ่ายไฟให้มันตามที่กำหนด เพราะเมื่อจ่ายไฟให้กับตัวรีเลย์ มันจะทำให้หน้าสัมผัสติดกัน กลายเป็นวงจรปิด และตรงข้ามทันทีที่ไม่ได้จ่ายไฟให้มัน มันก็จะกลายเป็นวงจรเปิด ไฟที่เราใช้ป้อนให้กับตัวรีเลย์ก็จะเป็นไฟที่มาจาก เพาเวอร์ฯ ของเครื่องเรา ดังนั้นทันทีที่เปิดเครื่อง ก็จะทำให้รีเลย์ทำงาน

ประเภทของรีเลย์

เป็นอุปกรณ์ทำหน้าที่เป็นสวิตช์โดยมีหลักการทำงานคล้ายกับ ขดลวดแม่เหล็กไฟฟ้าหรือโซลินอยด์ (solenoid) รีเลย์ใช้ในการควบคุมวงจร ไฟฟ้าได้อย่างหลากหลาย รีเลย์เป็นสวิตช์ควบคุมที่ทำงานด้วยไฟฟ้า แบ่งออกตามลักษณะการใช้งานได้เป็น 2 ประเภทคือ
  1. รีเลย์กำลัง (power relay) หรือมักเรียกกันว่าคอนแทกเตอร์ (Contactor or Magneticcontactor)ใช้ในการควบคุมไฟฟ้ากำลัง มีขนาดใหญ่กว่ารีเลย์ธรรมดา
  2. รีเลย์ควบคุม (control Relay) มีขนาดเล็กกำลังไฟฟ้าต่ำ ใช้ในวงจรควบคุมทั่วไปที่มีกำลังไฟฟ้าไม่มากนัก หรือเพื่อการควบคุมรีเลย์หรือคอนแทกเตอร์ขนาดใหญ่ รีเลย์ควบคุม บางทีเรียกกันง่าย ๆ ว่า "รีเลย์"

ชนิดของรีเลย์

การแบ่งชนิดของรีเลย์สามารถแบ่งได้ 11 แบบ คือ
ชนิดของรีเลย์แบ่งตามลักษณะของคอยล์ หรือ แบ่งตามลักษณะการใช้งาน (Application) ได้แก่รีเลย์ดังต่อไปนี้
  1. รีเลย์กระแส (Current relay) คือ รีเลย์ที่ทำงานโดยใช้กระแสมีทั้งชนิดกระแสขาด (Under- current) และกระแสเกิน (Over current)
  2. รีเลย์แรงดัน (Voltage relay) คือ รีเลย์ ที่ทำงานโดยใช้แรงดันมีทั้งชนิดแรงดันขาด (Under-voltage) และ แรงดันเกิน (Over voltage)
  3. รีเลย์ช่วย (Auxiliary relay) คือ รีเลย์ที่เวลาใช้งานจะต้องประกอบเข้ากับรีเลย์ชนิดอื่น จึงจะทำงานได้
  4. รีเลย์กำลัง (Power relay) คือ รีเลย์ที่รวมเอาคุณสมบัติของรีเลย์กระแส และรีเลย์แรงดันเข้าด้วยกัน
  5. รีเลย์เวลา (Time relay) คือ รีเลย์ที่ทำงานโดยมีเวลาเข้ามาเกี่ยวข้องด้วย ซึ่งมีอยู่ด้วยกัน 4 แบบ คือ
    1. - รีเลย์กระแสเกินชนิดเวลาผกผันกับกระแส (Inverse time over current relay) คือ รีเลย์ ที่มีเวลาทำงานเป็นส่วนกลับกับกระแส
    2. - รีเลย์กระแสเกินชนิดทำงานทันที (Instantaneous over current relay) คือรีเลย์ที่ทำงานทันทีทันใดเมื่อมีกระแสไหลผ่านเกินกว่าที่กำหนดที่ตั้งไว้
    3. - รีเลย์แบบดิฟฟินิตไทม์เล็ก (Definite time lag relay) คือ รีเลย์ ที่มีเวลาการทำงานไม่ขึ้นอยู่กับความมากน้อยของกระแสหรือค่าไฟฟ้าอื่นๆ ที่ทำให้เกิดงานขึ้น
    4. - รีเลย์แบบอินเวอสดิฟฟินิตมินิมั่มไทม์เล็ก (Inverse definite time lag relay) คือ รีเลย์ ที่ทำงานโดยรวมเอาคุณสมบัติของเวลาผกผันกับกระแส (Inverse time) และ แบบดิฟฟินิตไทม์แล็ก (Definite time lag relay) เข้าด้วยกัน
  6. รีเลย์กระแสต่าง (Differential relay) คือ รีเลย์ที่ทำงานโดยอาศัยผลต่างของกระแส
  7. รีเลย์มีทิศ (Directional relay) คือรีเลย์ที่ทำงานเมื่อมีกระแสไหลผิดทิศทาง มีแบบรีเลย์กำลังมีทิศ (Directional power relay) และรีเลย์กระแสมีทิศ (Directional current relay)
  8. รีเลย์ระยะทาง (Distance relay) คือ รีเลย์ระยะทางมีแบบต่างๆ ดังนี้
    1. - รีแอกแตนซ์รีเลย์ (Reactance relay)
    2. - อิมพีแดนซ์รีเลย์ (Impedance relay)
    3. - โมห์รีเลย์ (Mho relay)
    4. - โอห์มรีเลย์ (Ohm relay)
    5. - โพลาไรซ์โมห์รีเลย์ (Polaized mho relay)
    6. - ออฟเซทโมห์รีเลย์ (Off set mho relay)
  9. รีเลย์อุณหภูมิ (Temperature relay) คือ รีเลย์ที่ทำงานตามอุณหภูมิที่ตั้งไว้
  10. รีเลย์ความถี่ (Frequency relay) คือ รีเลย์ที่ทำงานเมื่อความถี่ของระบบต่ำกว่าหรือมากกว่าที่ตั้งไว้
  11. บูคโฮลซ์รีเลย์ (Buchholz ‘s relay) คือรีเลย์ที่ทำงานด้วยก๊าซ ใช้กับหม้อแปลงที่แช่อยู่ในน้ำมันเมื่อเกิด ฟอลต์ ขึ้นภายในหม้อแปลง จะทำให้น้ำมันแตกตัวและเกิดก๊าซขึ้นภายในไปดันหน้าสัมผัส ให้รีเลย์ทำงาน
ภาพของ current relay


















วิธีการต่อวงจรมอเตอร์คอมเพรสเซอร์

11.3 วิธีการต่อวงจรมอเตอร์คอมเพรสเซอร์(compressor motor circuit)
คอมเพรสเซอร์ที่นิยมใช้ในเครื่องทำความเย็นทั่วไป คือ คอมเพรสเซอร์แบบหุ้มปิด(hermeticcompressor) การต่อวงจรมอเตอร์เพื่อใช้ขับคอมเพรสเซอร์สามารถต่อเพื่อให้เหมาะสมกับลักษณะงานที่ใช้ดังนี้
11.3.1 แบบ RSIR (resistance start –induction run)
วงจรมอเตอร์คอมเพรสเซอร์แบบ RSIR ทำงานโดยอาศัยรีเลย์ช่วยสตาร์ตชนิดทำงานด้วยกระแส (Current relay) ขณะเริ่มทำงานรีเลย์จะต่อวงจรให้ทั้งขดลวดรันและขดลวดสตาร์ตครบวงจร สร้างแรงบิดมากพอให้คอมเพรสเซอร์เริ่มทำงานได้ หลังจากนั้นรีเลย์จะตัดวงจรเหลือขดลวดรันทำงานเพียงขดเดียว ใช้ได้เฉพาะคอมเพรสเซอร์ขนาดเล็ก เช่น ที่ใช้ในตู้น้ำเย็น ตู้เย็น ขนาดไม่เกิน 1/3 แรงม้า ซึ่งต้องการกำลังทั้งช่วงสตาร์ตและช่วงทำงานปกติไม่มากนัก

                                                                          รูปที่ 11.9 แสดงการต่อมอเตอร์ แบบ RSIR

11.3.2 แบบ CSIR(capacitor start-induction run)
CSIR เป็นการต่อวงจรมอเตอร์คล้ายกับแบบ RSIR ต่างกันเพียงการเพิ่มคาปาซิเตอร์แบบสตาร์ตต่ออนุกรมระหว่างหน้าสัมผัสของรีเลย์และขดลวดสตาร์ตของมอเตอร์ จึงให้แรงบิดในช่วงเริ่มต้นดีกว่าแบบ RSIR ส่วนช่วงทำงานปกติจะทำงานเหมือนกับแบบ RSIR ใช้งานในเครื่องทำความเย็นขนาดเล็กจนถึงขนาด 3/4 แรงม้า


                                                รูปที่ 11.10 แสดงการต่อมอเตอร์แบบ CSIR

11.3.3 แบบ PSC (permanent split capacitor)
การต่อวงจรมอเตอร์คอมเพรสเซอร์ แบบ PSC ใช้คาปาซิเตอร์แบบรันต่ออนุกรมโดยถาวรกับขดลวดสตาร์ตของมอเตอร์ คาปาซิเตอร์และขดลวดสตาร์ตจะต้องทำงานตลอดทั้งช่วงสตาร์ตและช่วงทำงานปกติโดยไมมีรีเลย์มาตัดวงจร ขณะทำงานจึงมีกระแสผ่านทั้งขดลวดรันและขดลวดสตาร์ต ทำให้มีกำลังขับดีกว่าแบบ RSIR และ CSIR ใช้ในเครื่องทำความเย็นและเครื่องปรับอากาศตั้งแต่ขนาดเล็กจนถึง 5 แรงม้า โดยเฉพาะต้องเป็นระบบที่สามารถถ่ายเทความดันระหว่างด้านความดันสูงและความดันต่ำ (balance pressure) ได้ขณะคอมเพรสเซอร์หยุดทำงาน เช่น ระบบที่ใช้ capillary tube



รูปที่ 11.11 แสดงการต่อมอเตอร์แบบ PSC

11.3.4 แบบ CSR (capacitor start and run)
CSR เป็นการต่อวงจรมอเตอร์คล้ายกับแบบ PSC ต่างกันเพียงการเพิ่มคาปาซิเตอร์แบบสตาร์ตต่ออนุกรมกับขดลวดสตาร์ตของมอเตอร์ โดยมีรีเลย์ช่วยสตาร์ตชนิดทำงานด้วยค่าความต่างศักย์ไฟฟ้า(Potential relay) เป็นตัวตัดคาปาซิเตอร์ไม่ให้ทำงานหลังจากมอเตอร์เริ่มต้นทำงานและหมุนได้ความเร็วประมาณ 75 % ของความเร็วรอบปกติ เป็นมอเตอร์ที่ใช้กำลังช่วงเริ่มต้นดีกว่าแต่ช่วงปกติจะทำงานเหมือนกับแบบ PSC จึงถูกนำไปใช้กับระบบที่ไม่สามารถ balance pressure ขณะคอมเพรสเซอร์หยุดทำงานได้ เช่น ระบบที่ใช้ลิ้นลดความดันชนิดthermostatic expansion valve

รูปที่ 11.12 แสดงการต่อมอเตอร์แบบ CSR



การต่อวงจรมอเตอร์ทั้ง 4 แบบ สามารถเลือกต่อวงจรให้เหมาะสมกับลักษณะงานได้ เช่น จากวงจรพื้นฐานแบบ RSIR สามารถปรับวงจรเป็นแบบ CSIR ได้ถ้าต้องการให้มอเตอร์ขนาดเล็กมีแรงบิดในช่วงเริ่มต้นทำงานดีขึ้น โดยการเพิ่มคาปาซิเตอร์แบบสตาร์ตในวงจร หรือวงจรพื้นฐานแบบ PSC สามารถปรับวงจรเป็นแบบ CSR ได้เช่นเดียวกันเมื่อต้องการให้มอเตอร์ขนาดใหญ่มีแรงบิดในช่วงเริ่มต้นดีขึ้น โดยการเพิ่มคาปาซิเตอร์แบบสตาร์ตและ potential relay มาต่อในวงจร ซึ่งเขียนเป็นวงจรเปรียบเทียบกันได้ดังรูปที่ 11.13







อุปกรณ์ไฟฟ้าในเครื่องปรับอากาศ

อุปกรณ์ไฟฟ้าในเครื่องปรับอากาศ


 Current Relay

- ป้องกันความเสียหายของ Motor และ Load
- ป้องกันกระแสเกินหรือกระแสตก
- ตั้งหน่วงเวลาได้ 0 -10 วินาที
- ตั้งหน่วงเวลาขณะสตาร์ทได้ 0 - 30 วินาที
- SPDT Relay Output

            Current Relay CR 95 เป็นอุปกรณ์อิเล็กทรอนิกส์ ใช้ป้องกันกระแสไฟฟ้าสูงกว่าค่ากำหนด (Over Current) หรือกระแสไฟฟ้าต่ำกว่าค่ากำหนด (Under Current) Current Relay จะตรวจสอบค่ากระแสไฟฟ้า เมื่อกระแสเกินกว่าค่าที่ตั้งไว้ รีเลย์จะทำงานพร้อมทั้งมี LED สีแดงติดสว่าง การตั้งค่ากระแส ใช้ปุ่มปรับ "CURRENT" การทำงานของรีเลย์สามารถตั้งหน่วงเวลาได้ 0 - 10 วินาที โดยปรับปุ่ม "DELAY" นอกจากนี้ยังสามารถตั้งหน่วงเวลา เฉพาะในขณะเริ่มสตาร์ท ("START DELAY") ได้ 0 - 30 วินาที เพื่อป้องกัน Starting Current ทำให้รีเลย์ทำงาน Current Relay สามารถนำไปใช้ป้องกันอุปกรณ์ไฟฟ้าได้หลายลักษณะ เช่น
  • ป้องกันมอเตอร์ Over Load ซึ่งความไวของ Current Relay นี้จะไวกว่าชุด Overload ชนิด Bimetal ที่ใช้ทั่วไปทำให้ สามารถป้องกันความเสียหายที่จะเกิดกับมอเตอร์และโหลดของมอเตอร์ได้ดีกว่า
     
  • ในงานบางอย่าง ถ้ากระแสมีค่าต่ำกว่าปกติ (Under Current) จะเกิดความเสียหายได้ เช่น ฮีทเตอร์ขาด, สายพานขาดหรือปั๊มพ์ทำงานโดยไม่มีของเหลวไหลผ่านซึ่ง Current Relayสามารถใช้ป้องกันความเสียหายเหล่านี้ได้





ฮอตไวร์รีเลย์ (Hot Wire Relay)  





  ส่วนประกอบของแอร์    
ฮอตไวร์รีเลย์ (Hot Wire Relay) 
    หลักการทำงานของฮอตไวร์รีเลย์ขึ้นอยู่กับผลของความร้อนที่เกิดขึ้นกับลวดความร้อน (Hot Wire) ในขณะที่สตาร์ตมอเตอร์ กระแสจะสูงผ่านลวดความร้อนเกิดการขยายตัว ทำให้หน้าสัมผัสของรีเลย์ที่ต่อไปยังขดลวดของมอเตอร์จากออก ซึ่งเป็นการตัดขดลวดสตาร์ตออกจากวงจร 

ฮอตไวร์รีเลย์ประกอบด้วยหน้าสัมผัส 2 ชุดคือ 

1. หน้าสัมผัส S ซึ่งต่อเป็นอนุกรมอยู่กับขดลวดสตาร์ตของมอเตอร์ 
2. หน้าสัมผัส M ซึ่งต่อเป็นอนุกรมอยู่กับขดลวดของมอเตอร์ 

  ตามปกติหน้าสัมผัสทั้งคู่ของรีเลย์ชนิดนี้จะต่อกันอยู่ ฉะนั้นในช่วงจังหวะสตาร์ตมอเตอร์ทั้งขดลวดสตาร์ตและขดลวดรันจึงอยู่กับวงจร ในช่วงจังหวะการสตาร์ตนี้กระแสจะสูง และผ่านลวดความร้อนทำให้เกิดการขยายตัว ดึงเอาหน้าสัมผัส S ให้จากออกซ่วงเป็นการตัดขดลวดสตาร์ตออกจากวงจร ภายหลังจากที่ขดลวดสตาร์ตถูกตัดออกจากวงจรแล้ว กระแสซึ่งผ่านลวดความร้อนและขดลวดรันของมอเตอร์ยังคงทำให้มอเตอร์หมุนตามปกติอยู่ และคงมีความร้อนเพียงพอที่จะพึงให้หน้าสัมผัส S จากอยู่ตลอดเวลา แต่ไม่มากพอที่จะขยายตัวจนหน้าสัมผัส M จากออก  





รีเลย์ช่วยสตาร์ตชนิดทำงานด้วยค่าความต่างศักย์ไฟฟ้า (Potential Relay)

รีเลย์ช่วยสตาร์ตชนิดทำงานด้วยค่าความต่างศักย์ไฟฟ้า ใช้ในวงจรที่มอเตอร์ของคอมเพรสเซอร์ต่อแบบ CSR โดยอาศัยค่าความต่างศักย์ที่เกิดจากขดลวดสตาร์ตของมอเตอร์กระทำผ่านขดลวดในรีเลย์ ทำการตัดหน้าสัมผัสในรีเลย์ จึงเรียกรีเลย์ชนิดนี้ว่า Potential Relay

เทอร์โมสตัส อุปกรณ์ที่ทำหน้าที่ควบคุมอุณหภูมิภายในตู้เย็น

เทอร์โมสตัสเป็นอุปกรณ์ที่ทำหน้าที่ควบคุมอุณหภูมิภายในตู้เย็นหรือภายในห้องปรับอากาศให้อยู่ในช่วงที่ต้องการโดยอัตโนมัติ ในขณะที่อุณหภูมิในตู้เย็นหรือในห้องปรับอากาศยังสูงอยู่ หน้าสัมผัสของเทอร์โมสตัสจะต่ออยู่ มอเตอร์คอมเพรสเซอร์จะทำงานดูดอัดสารความเย็น ทำให้เกิดผลความเย็นที่อีวาพอเรเตอร์ และเมื่ออุณหภูมิภายในตู้เย็นหรือในห้องปรับอากาศลดต่ำลงถึงจุดที่ตั้งไว้ หน้าสัมผัสของเทอร์โมสตัสจะแยกจาก ทำให้มอเตอร์คอมเพรสเซอร์หยุดทำงาน จนกระทั้งอุณหภูมิภายในห้องปรับอากาศสูงขึ้นอีก หน้าสัมผัสของเทอร์โมสตัตจะต่ออีกครั้งหนึ่ง ทำให้คอมเพรสเซอร์เริ่มทำงานใหม่ ซึ่งเป็นการควบคุมอุณหภูมิภายในตู้เย็นหรือภายในห้องปรับอากาศให้อยู่ในช่วงที่ต้องการโดยอัตโนมัติ เครื่องปรับอากาศขนาดเล็กในปัจจุบัน ได้นำเอาเทอร์โมสตัสแบบอิเล็กทรอนิกส์เข้ามาใช้ในการควบคุมอุณหภูมิ

แม็กเนติกคอนแทกเตอร์ (Magnetic Contactor)

แม็กเนติกคอนแทกเตอร์ (Magnetic Contactor) เป็นสวิตซ์อีกชนิดหนึ่ง ประกอบด้วยส่วนที่สำคัญ 2 ส่วนคือ ส่วนที่เป็นขดลวดหรือคอยล์ ซึ่งเมื่อป้อนกระแสไฟฟ้าเข้าในขดลวดแล้วจะเกิดสนามแม่เหล็กขึ้น และอีกส่วนหนึ่งเป็นหน้าสัมผัสของตัวแม็กเนติคอนแทกเตอร์ ทำหน้าที่ตัดหรือต่อวงจรไฟฟ้า กำลังที่ป้อนเข้าโหลด หลักการทำงานของแม็กเนติกคอนแทกเตอร์คือ เมื่อป้อนกระแสไฟฟ้าเข้าในขดลวดจะเกิดสนามแม่เหล็กขึ้นรอบขดลวด มีอำนาจดูดเหล็กอาร์มาเจอร์ (Armature) ซึ่งแกนเหล็กนี้ปลายข้างหนึ่งจะต่ออยู่กับหน้าสัมผัสเคลื่อนที่ (Moving Contact) และปลายอีกข้างหนึ่งวางอยู่บนสปริง ซึ่งจะคอยผลักแกนเหล็กอาร์มาเจอร์ให้หน้าสัมผัสจาก เมื่อขดลวดเกิดสนามแม่เหล็กและมีอำนาจมากกว่าแรงดันสปริง แกนอาร์มาเจอร์จะถูกดูด ทำให้หน้าสัมผัสต่อกัน และเมื่อตัดกระแสไฟฟ้าที่ป้อนเข้าขดลวด อำนาจแม่เหล็กรอบขดลวดจะหมดไป แรงดันสปริงจะผลักแกนเหล็กอาร์มาเจอร์ให้หน้าสัมผัสจากออก
หน้าสัมผัสของแม็กเนติกคอนแทกเตอร์ในหนึ่งตัวอาจจะมีขั้วเพียงขั้วเดียว หรือ 2 ขั้ว หรือ 3 ขั้วก็ได้ และหน้าสัมผัสอาจเป็นแบบปกติเปิดทั้งหมด หรืออาจจะมีทั้งหน้าสัมผัสปกติเปิดและปกติปิดสลับกันก็ได้ ทั้งนี้ขึ้นอยู่กับแบบและวงจรการควบคุม
การเลือกแม็กเนติกคอนแทกเตอร์เพื่อใช้งานต้องคำนึงถึงหลักเบื้องต้นดังนี้
  1. ขนาดของแรงเคลื่อนไฟฟ้าที่ป้อนเข้าขดลวดของแม็กเนติกคอนแทกเตอร์ จะมีขนาด คือ 6 โวลต์ DC, 12 โวลต์ DC, 24 โวลต์ AC, 48 โวลต์ AC, 220 โวลต์ AC และ 380 โวลต์ AC เป็นต้น
  2. ขนาดการทนกระแสของหน้าสัมผัส จะขึ้นอยู่กับการกินกระแสของโหลดที่ต้องการควบคุมซึ่งมีขนาดคือ 20, 25, 30, 40, 50 และ 60 แอมแปร์ หรือมากกว่าขึ้นไป เป็นต้น
  3. จำนวนขั้วของหน้าสัมผัส จะขึ้นอยู่กับจำนวนสายไฟที่ต้องการควบคุมการตัด-ต่อ เช่น ถ้าต้องการตัด – ต่อวงจรที่มีสายไฟ 3 เส้น ก็ต้องใช้หน้าสัมผัส 3 ขั้ว เป็นต้น
  4. ชนิดของหน้าสัมผัสจะขึ้นอยู่กับโหลดที่ต้องการใช้งาน และขนาดของกระแสไฟ

รีเลย์ (Relay) ทีใช้ในงานเครื่องทำความเย็น

รีเลย์ (Relay) ทีใช้ในงานเครื่องทำความเย็นจะต่อเข้ากับวงจรมอเตอร์คอมเพรสเซอร์ เพื่อทำหน้าที่ตัดไฟฟ้าซึ่งเข้าเลี้ยงขดลวดสตาร์ตออกจากวงจรเมื่อมอเตอร์หมุนออกตัวได้แล้ว เช่นเดียวกับสวิตซ์แรงเหวี่ยงหนีศูนย์ที่อยู่ภายในมอเตอร์ ซึ่งจะคอยตัดขดลวดสตาร์ตออกจากววจรโดยอัตโนมัติ เมื่อมอเตอร์หมุนและมีความเร็วรอบตามเกณฑ์แล้ว แต่โดยที่มอเตอร์คอมเพรสเซอร์แบบเฮอร์เมติกไม่สามารถติดตั้งสวิตซ์แรงเหวี่ยงหนีศูนย์เข้าไว้ภายในตัวเรือนได้ จึงจำเป็นต้องใช้รีเลย์ต่อเข้ากับวงจรภายนอกทำหน้าที่แทน ซึ่งรีเลย์ที่พบใช้ในงานเครื่องทำความเย็น แบ่งออกได้ดังนี้
  1. เคอร์เรนต์รีเลย์ (Current Relay)
  2. โพเทนเชียลรีเลย์ (Potential Relay)
  3. ฮอตไวร์รีเลย์ (Hot Wire Relay)
ตามปกติขดลวดสตาร์ตของมอเตอร์ควรจะมีไฟเลี้ยงในจังหวะสตาร์ตเพียงช่วงสั้น ๆ ประมาณ 3-4 วินาที เพราะถ้าปล่อยให้กระแสไฟฟ้าผ่านเข้าเลี้ยงขดลดสตาร์ตนานเกินไป ขดลวดสตาร์ตอาจร้อนจัด ทำให้เกิดอันตรายต่อมอเตอร์ได้ ฉะนั้นในการทำงานที่ถูกต้อง รีเลย์ที่ใช้ต้องให้ได้ขนาดพอดีกับมอเตอร์ การซ่อมเปลี่ยนรีเลย์ใหม่จะต้องแน่ใจว่ารีเลย์ใหม่นี้มีขนาดและคุณสมบัติในการใช้งานเท่ากับรีเลย์ตัวเดิมเสมอ

โอเวอร์โหลด อุปกรณ์ป้องกันมอเตอร์คอมเพรสเซอร์ชำรุด

โอเวอร์โหลดเป็นอุปกรณ์ป้องกันไม่ให้มอเตอร์คอมเพรสเซอร์เกิดการชำรุดเสียหายเมื่อระบบเครื่องทำความเย็นเกิดการขัดข้อง และถ้ามอเตอร์คอมเพรสเซอร์กินกระแสมากเกินไปโอเวอร์โหลดจะตัดวงจรไฟที่ป้อนเข้ามอเตอร์คอมเพรสเซอร์ก่อนที่ขดลวดของมอเตอร์จะไหม้
หลักการทำงานของโอเวอร์โหลดจะอาศัยหลักของโลหะ 2 ชนิดที่มีสัมประสิทธิ์การขยายตัวไม่เท่ากันมาตรึงติดกัน ในขณะที่มอเตอร์คอมเพรสเซอร์ทำงานเป็นปกติ หน้าสัมผัสของโอเวอร์โหลดจะมีไฟเข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์อยู่ตลอดเวลา และถ้ามอเตอร์คอมเพรสเซอร์กินกระแสมากเกินไปจะเกิดความร้อน โลหะทั้งสองชนิดจะขยายตัวไม่เท่ากันและจะเกิดการงอตัว ทำให้หน้าสัมผัสจากออกเพื่อตัดวงจรไฟที่เข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์ ป้องกันไม่ให้ขดลวดของมอเตอร์คอมเพรสเซอร์ไหม้และอุณหภูมิของมอเตอร์คอมเพรสเซอร์เย็นลง โลหะทั้งสองชนิดจะเกิดการหดตัวดึงให้หน้าสัมผัสของโอเวอร์โหลดต่อกันอีกครั้งหนึ่ง ทำให้มีไฟเข้าเลี้ยงขดลวดของมอเตอร์คอมเพรสเซอร์ใหม่ และถ้าอาการขัดข้องของระบบเครื่องทำความเย็นยังไม่ได้รับการแก้ไข โอเวอร์โหลดจะตัด-ต่อวงจรอยู่ตลอดเวลา ซึ่งต้องรีบตัดไฟเข้าเครื่องหรือถอดปลั๊กไฟออก และตรวจหาข้อขัดข้องทันที